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Abstract—To overcome the limitations of experimental and
numerical design processes in terms of time, cost, efficiency, and
uncertainty, researchers are developing optimization frameworks
utilizing surrogate models based on Artificial Neural Networks
(ANNSs). Further enhancement of these frameworks is achieved by
integrating adaptive sampling methods, which improve efficiency
by reducing the number of training samples needed to reach
optimal solutions. In this study, the aerodynamic shape of
NACAO0012 airfoil was optimized using an ANN-based surrogate
model that investigated two different sampling techniques: One-
Shot sampling with a Sobol sequence and Optimization-Based
Adaptive sampling. The Hicks-Henne function was used to
deform the shape, XFOIL was used for numerical simulations,
and Sequential Least Squares Programming (SLSQP) was em-
ployed as the optimizer. Aerodynamic coefficients at the optimal
points were compared for both sampling techniques. Although
both strategies improved Lift and Aerodynamic Efficiency, the
Optimization-Based Adaptive Sampling model found the global
maximum, while the One-Shot Sampling remained at a local
maximum. The Adaptive Sampling ANN model increased lift
by 58.68%. Moreover, the errors of predicted optima for both
models were calculated relative to XFOIL results. The Adap-
tive Sampling ANN model displayed superior accuracy at the
optimum. However, both models performed similarly across the
design space.

Index Terms—Artificial Neural Network, Aerodynamic Shape
Optimization, Sobol Sampling, Optimization-Based Adaptive
Sampling, XFOIL, Hicks-Henne Function, SLSQP

I. INTRODUCTION

Traditional manual design methods, such parametric analy-
ses and cut-and-try techniques, database-matrix approaches,
and other intuitive approaches, heavily rely on data and
expertise. These methods are generally unsystematic, and often
inefficient practices, which provide discrete designs in the
design space, leaving considerable uncertainty in optimality
[1]. Whereas methods like Computational Fluid Dynamics
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(CFD) based Iterative Design and Analysis require a great deal
of processing power which can be both time-consuming and
costly. To tackle these problems, researchers have developed
optimization algorithms based on surrogate models, including
the kriging model [2], the support vector machine model [3],
and the neural network model [4]. By eliminating the necessity
of extensive numerical computations, the surrogate models
have gained popularity in aerodynamic design.

Despite their popularity in aerodynamic design, there is
variation in performance among these surrogate models in
different conditions. Zhang et al. [5] showed that the modeling
accuracy of Support Vector Machine regression model in
aerodynamic prediction of small samples in wind tunnel test
is poor, which is difficult to meet the needs of engineering
application. Moreover, RBF neural network shallow learning
prediction effect is better than Support Vector Machine regres-
sion model, but for training sets with strong nonlinearity and
weak regularity, the degree of freedom of RBF neural network
with single hidden layer can’t meet the accuracy requirements
of prediction model. They identified the Kriging model to be
the best one among the three shallow learning models for
aerodynamic prediction of small samples in wind tunnel test.

Nevertheless, training these surrogate models require exten-
sive experimental or numerical data generation as well, which
defeats the purpose of shifting towards surrogate model in
the first place. Therefore, it makes sense to further reduce
the number of training samples with an aim to reach the
global optimum of an optimization problem as fast as possible.
This leads the coupling of surrogate models with adaptive
sampling, which iteratively improves the approximation. A
more precise Optimization-Based Adaptive Sampling has been
proven to be more efficient in previous studies [6], [7]. A
noteworthy study is the study of Kim and Boukouvala [8].



They tested different subset selection methods over a large
set of box-constrained and constrained benchmark problems
with up to 30 dimensions, and their performance is compared
to that of the popular interpolating surrogate modeling tech-
nique, Kriging. Their results indicated that the use of this
Optimization-Based Adaptive Sampling lead to more problems
solved when sampling is limited. All of their subset selection
methods showed promising performance, especially for low-
dimensional problems. But this is not the only sampling
method that improves the efficiency of a framework.

Jiangtao et al. [9] established a new sampling method called
RMSE and crowdness enhance (RCE) adaptive sampling.
Their results show that RCE adaptive sampling method not
only reduces the requirement for the number of samples,
but also effectively improves the prediction accuracy of the
surrogate model. Moreover, in 2020, Li et al. [10] proposed
a new sampling method for airfoils and wings, which is
based on a deep convolutional generative adversarial network
(DCGAN). They trained the network to learn the underlying
features among the existing airfoils and to generate sample
airfoils that are notably more realistic than those generated by
other sampling methods. They showed that the model can be
trained using a small database of only dozens of airfoils, and
synthetic airfoils of this model reserve the specific geometric
features of training airfoils. In 2024, Wang et al. [11] proposed
a surrogate model based on ensemble learning (Ensemble) and
a hybrid sampling strategy for any surrogate model. Given
the assistance of hybrid sampling, they reduced the average
number of CFD calls by more than 48.2% compared to that
of Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
and Particle Swarm Optimization (PSO).

The purpose of exploring these sampling strategies is to
develop a framework that can find the global optimum value
using as few samples as possible, thereby reducing computa-
tional time and cost. Contemporary research has been focused
on not only developing certain surrogate based optimization
frameworks but also finding strategic ways to further minimize
cost and time.

In this study, an optimization framework has been de-
veloped to enhance foil efficiency by maximizing lift while
constraining drag and sectional area to remain constant. The
NACAOQ012 airfoil was chosen as the base foil for the opti-
mization process due to its predictability and popularity in re-
search. Surrogate models were developed using Artificial Neu-
ral Networks (ANN) to predict the aerodynamic coefficients
with respect to the design variables. Furthermore, the added
benefits of using Optimization-Based Adaptive Sampling as
opposed to One-Shot Sampling have been investigated, focus-
ing on reaching the global optimum with a reduced number
of samples.

II. METHODOLOGY
A. Shape Parametrization

This study utilizes the Hicks-Henne bump function [12] to
parameterize the shape of the original airfoil. This method
has shown good results in airfoil parameterization with a low

number of design parameters [13]. Moreover, Hicks-Henne
functions also provide sufficiently smooth geometries, along
with adequate freedom in shape deformation without altering
the positions of the leading and trailing edges [14]. Since
the optimization is performed for a specific flow condition,
the angle of attack should be kept constant. This means that
the positions of the leading and trailing edges cannot be
changed. Considering these requirements, the Hicks-Henne
bump function has been chosen as the shape parameterization
method for this study.

In this function, a linear combination of n augmented sine
functions is added to the original coordinates of the airfoil in
the form of a bump. With this parameterization, the upper and
lower surfaces of the airfoil are deformed independently. The
function can be written in this form:

n 1n(0.5)
Ymod = Yo + Z a; sin®? (Wml“(miw)) (1)
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Where, yg = initial coordinates of the upper or lower surface
of the airfoil, ymoq = final coordinates of the upper or lower
surface of the airfoil, n = number of bumps for each one of
the upper or lower surfaces, ¥ = x coordinate of the bump
or x coordinate of the control point. w; = bump width, a; =
bump intensity or coordinate’s values of the control point. For
this airfoil deformation process, all other parameters (z, w;)
except for the bump intensity (a;) are kept fixed or unchanged.
Therefore, the design variable is the bump intensity (a;).

In this case, four control points have been chosen for each of
the upper and lower surfaces, resulting in a total of eight design
variables or bump intensities (a; = X1,T2,%3,....... ,xg)
required for this problem. The design variables are points on
the airfoil surface taken at 20%, 40%, 60%, and 80% of the
chord on the suction side and pressure side. A Python code
was written to create the Hicks-Henne function and generate
deformed foil shapes.

B. Sampling Strategies

After defining the design variables and surrogate model
type, it is crucial to determine how to vary the parameters
within the design space. The sampling method significantly af-
fects the effectiveness of the surrogate model, influencing both
the outcome and the number of samples required. Sampling for
surrogate models can be categorized into two types. Standard
Surrogate Model Optimization (SSMO) typically uses a one-
shot sampling approach, such as Latin hypercube sampling
(LHS), Sobol sampling, or random sampling, where the num-
ber of computer simulations is fixed at the start of the process.
In contrast, Iterative Surrogate Model Optimization (ISMO)
employs sequential sampling techniques to build a sufficiently
accurate surrogate using as few samples as possible.

In design optimization problems, such as aerodynamic shape
optimization (ASO), it is essential to develop a surrogate
model that accurately predicts the region of interest—such as
minima or maxima—with high precision, using a small num-
ber of samples. Since data collection is computationally expen-
sive and time-consuming, an incremental approach to placing



samples efficiently is preferred. As the goal of surrogate-based
optimization (SBO) is to find the global optimum, points near
the optima are more critical than others. Thus, building a
surrogate that uniformly fits the entire design space would
be inefficient given the sample constraints. Therefore, newly
added data points should be chosen selectively to ensure the
surrogate accurately fits the region near the optimum. This
strategy effectively focuses on areas with a higher likelihood
of containing the global optimum. It should be emphasized that
this study aims to generate a sufficiently accurate surrogate for
predicting the region of the optimum, rather than one that fits
the entire design space. Consequently, the final model may
have lower accuracy in regions of lesser interest but will be
highly accurate around the optimum.

This study explores two different sampling techniques.
One is the quasi-random, low-discrepancy sequence known
as Sobol sampling, which fills the design space uniformly.
The other method is an optimization-based adaptive sampling
strategy, where an initial set of samples is generated using
Sobol, followed by the iterative addition of a selectively
chosen sample set.

1) Sobol Sampling: Sobol sequences [15] represent a
type of quasi-random, low-discrepancy, and low-dispersion
sequence. These sequences, which fall under Quasi-Monte
Carlo methods, exhibit a faster convergence rate compared
to standard Monte Carlo algorithms [16]. In this study, Sobol
sequencing was chosen as one of the sampling methods due
to its ability to evenly distribute points in space by mini-
mizing empty regions. As previously mentioned, eight design
variables were selected, representing the bump intensities of
the Hicks-Henne function for the upper and lower surfaces
of the airfoil. Using Python’s Quasi-Monte Carlo submodule
(scipy.stats.qmc), samples of design variables were generated
(Figure 1).

Sampling of variable x1, x2 and x3

Fig. 1. Example of Sobol sampling of design variables.

2) Optimization-Based Adaptive Sampling: Optimization-
based adaptive sampling is an iterative technique that begins
by generating an initial set of samples using a space-filling

method, such as Sobol sampling. A surrogate model is then
built based on these samples. Due to the limited number
of initial samples, the first surrogate model usually has low
accuracy. To refine the initial surrogate model, it is optimized,
even in its inaccurate state, to identify potential optima. To
locate both global and local optima, multiple optimizations are
performed using different initial points. Once the optima are
found, new sample points are generated around these regions,
forming clusters near the optima. These clusters are created
using Sobol sampling within smaller, defined boundaries. The
surrogate model is then updated with the newly acquired sam-
ples, and the process is repeated iteratively. The procedure con-
tinues until one of the following criteria is met: (1) the solution
does not improve over a consecutive set of iterations, (2) the
solution shows minimal variation with different initial points,
or (3) a feasible solution is reached with sufficiently low loss.
Figure 2 illustrates the overall process of optimization-based
adaptive sampling for an unknown function.

2. First Surrogate Fitting

1. Initial Sampling

- - —— Surrogate function

3. Optimization-based Resampling 4. Final Surrogate Model & Optimization

New sample at X ., —— Updated surrogate function

Fig. 2. Optimization-based adaptive sampling. [?]

C. Numerical Simulation

The numerical simulation of the base airfoil NACA0012
and the deformed foils was performed using an interactive
program designed for the analysis and design of subsonic
isolated airfoils, called XFOIL [17]. XFOIL can be used for
both viscous and inviscid analyses, as well as for airfoil design
and inverse design. The inviscid formulation utilizes a linear-
vorticity panel method, while to account for viscous effects,
XFOIL combines the potential flow solution with boundary
layer analysis [18].

In this study, the shape of the NACAO012 airfoil was
optimized under fixed flow conditions. The lift and drag
coefficients of the base and deformed foils were extracted from
XFOIL simulations using an automated Python script. The
flow conditions were: Re = 1 x 10%, @ = 5°. The viscous
solution iteration limit (ITER) in XFOIL was increased to
allow up to 20 Newton iterations to ensure convergence.
This adjustment was made to avoid missing results and non-
converging calculations with more intricate foil designs. The
number of panel nodes was kept at 160.



D. ANN Model Training

In this research, the surrogate model was developed by
implementing an ANN model structured as a Feed Forward
Neural Network, where each neuron is connected to every neu-
ron in the next layer. The input neurons represent the design
variable values, and the output neurons represent the lift and
drag coefficient values. The model training was implemented
in Python, utilizing the TensorFlow framework, with Keras for
the machine learning-specific components.

Before the training process, the data was cleaned to re-
move any missing values and duplicates. To improve learning
performance, all inputs were normalized to fall within the
range [-1,1] before the start of the training phase. The total
dataset was divided into 5 folds for cross-validation. This
cross-validation set was used to estimate the generalization
error of the surrogate model. During the training process, the
loss function was set to Mean Absolute Error (MAE), and
the metrics evaluated were Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE). The Adam optimizer was used with a learning
rate of 0.01, and the tanh activation function was applied
to the hidden layers. L2 regularization was implemented to
prevent overfitting. The loss function values and metrics were
evaluated by varying the number of neurons in the hidden
layer using K-fold cross-validation. The model that produced
the lowest loss was selected as the surrogate model, which is
shown in Table L.

TABLE I
TRAINING PARAMETERS FOR ANN MODEL
Input Layer Tf;j:l (I);;itt Regularizer Optimizer Lc}g::;ng
8 14x1 2 L2:0.01 Adam 0.01
Los_s Metrics Acliva_tion Validation
Function Function Set
MAE MSE | RMSE | MAPE Tanh 20%

E. Surrogate Model Optimization

Using the Python module scipy.optimize.minimize, the
SLSQP optimizer was employed to implement the optimiza-
tion of the surrogate model. Sequential Least Squares Pro-
gramming (SLSQP) minimizes a function of several variables,
allowing for any combination of bounds, equality, and inequal-
ity constraints. The objective of this optimization problem is
to maximize the lift coefficient (C';) while keeping the drag
coefficient (C'p) constant and maintaining a constant area with
respect to the design variables. As previously mentioned, the
base airfoil is NACAO0012, and the number of design variables
is 8. To eliminate unrealistic airfoil shapes, the design variables
are constrained to +10% of the airfoil’s thickness. We restrict
the boundaries of each variable to [-0.012, 0.012]. The design
space lies between the regions of the green and orange curves
shown in Figure 3.

Objective: min (—C7p,)

Constraint 1:  Cp = Cp,,a
Constraint 2: A = Agiginal
Flow condition: Re = 1 x 10%, o = 5°.

— ai = 0 (Original Airfoil)
—— ai_min

Design Space

0.05 = —
v T —
g o000 —
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Fig. 3. Design space for optimization.
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Fig. 4. Optimization Flowchart for Adaptive Sampling Method

1) Surrogate Model Optimization with Adaptive Sampling:
In the case of the adaptive sampling method, the initial samples
were generated using a low-discrepancy Sobol sequence. Us-
ing the Hicks-Henne function, the deformed foil geometry was
generated based on the sample set of design variables. XFOIL
simulations of the deformed foils were performed to extract
the aerodynamic coefficients (Cr, Cp). A training dataset
of Cr, and Cp, corresponding to the design variables, was
created. An ANN-based surrogate model was then trained.
Optimization of the surrogate model was performed to find
both the local and global optima. In this case, three different
optimizations were carried out using three initial points, which
yielded different solutions. If the convergence criteria were not
met, four more points around each optimum were added using
Sobol, resulting in an additional 15 points for each iteration.
The new points were added to the previous sample set, and the
entire process was repeated until convergence. In this paper,
128 initial points were generated using Sobol sampling, and
samples were added over three iterations, leading to a total of
173 samples by the final iteration. The process flowchart of
this method is illustrated in Fig. 4.

2) Surrogate Model Optimization with One-shot Sampling:
In the one-shot sampling case, the entire optimization is



completed in a single sequence of processes. The total number
of samples is generated at the initial stage using space-
filling sampling methods like the Sobol sequence. Subse-
quently, shape parameterization, numerical simulation, dataset
generation, model training, and optimization are performed
sequentially. To compare with the adaptive sampling method,
173 samples were generated using Sobol sampling.

III. RESULTS AND DISCUSSION

With the aim to locate the global optimum, while concur-
rently reducing the sampling requirements, an Optimization-
Based Adapting Sampling is used. Fig. 5 illustrates the Lift

88.40 ® Base Case

ANN (One-Shot Sampling)

) ) 65.70
B ANN (Adaptive Sampling)
55.71

8.48 8.03 847

Cy *100 Cp *1000 AE

Fig. 5. Comparison of the aerodynamic coefficients of optimum for different
sampling techniques
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Fig. 6. Geometries of baseline and optimal airfoil
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coefficient (Cr), Drag coefficient (Cp) and Aerodynamic
Efficiency (AE = C1/Cp) of the Base Case, ANN model with
one-shot sampling and ANN model with adaptive sampling
for the final sampling size of 173. Here, the ANN model
with adaptive sampling, leads to an optimized foil shape that
exhibits 58.68% more lift relative to the base case, whereas,
the ANN with one-shot sampling method leads to 28.16%
more lift compared to the base case. These values indicate
that for the same number of samples, the adaptive sampling
method enabled the optimizer to reach a global optimum
more efficiently, while the one-shot sampling model is still
stuck at a local optimum. As the drag was constrained to
be constant, the Cp bars are almost equal for all cases. The
slight reduction in the one-shot sampling model indicates its
proclivity to underestimate the drag. Moreover, due to the
drag constraint, the percentage of increase is Aerodynamic
Efficiencies is almost analogous to the percentages of Lift
coefficients increase. The deformed geometries are illustrated
in Fig. 6. If we analyze the XFOIL results displayed in Fig. 7,
the increased lift can be explained by a decrease in pressure
on the suction side, accompanied by an increase in pressure
along the lower surface of the foil.

Nevertheless, reaching a global optimum is only half the
optimization problem. In order for the optimization method
to be useful, the surrogate model prediction at the optimum
point has to be accurate, i.e., it has to mimic the true value
closely enough so that the predicted optimum value is suffi-
ciently reliable. Fig. 8 depicts the percentage of error of the
predicted optimum relative to the XFOIL calculated result. If
we consider the blue bar that represents the Cp of the optimum
value for the adaptive sampling model, we can see it started off
at 22.5%, steadily decreasing through the iterations to around
18%, then around 7%, and nearly diminishing at the end.
The error for Lift coefficients of the adaptive sampling model
represented by the brown bar, increases at first to 9.75% from
5.33%, however, decreases to 8.47%, then suddenly drops to
a little under 2%. For both Cp and Cj, the adaptive sampling
method decreased the percentage of error significantly at the
end of the iterations. With the increased sample size, the one-
shot sampling method also decreased the percentage of error

25

m CD_Adaptive
20
CD_One-Shot
15 M CL_Adaptive
m CL_One-Shot
10
5
0 u
128
143 -
158
173

Number of Samples

% of Error compared to XFOIL

Fig. 8. Percentage of error of predicted optimum compared to XFOIL



TABLE 11

PERFORMANCE METRICES

Iteration | ANN with Adaptive Sampling | Sample count MAE MSE RMSE MAPE
0 Sobol (one-shot) 128 1.21E-02 | 3.30E-04 | 1.82E-02 1.27E+01
1 Sobol + selective (Adaptive) 143 1.27E-02 | 4.94E-04 | 2.22E-02 | 4.57E+00
2 Sobol + selective (Adaptive) 158 1.24E-02 | 3.52E-04 | 1.87E-02 | 6.79E+00
3 Sobol + selective (Adaptive) 173 1.26E-02 | 3.89E-04 | 1.97E-02 | 4.74E+00
Case ANN with One-Shot Sampling | Sample count MAE MSE RMSE MAPE
1 Sobol (one-shot) 173 1.35E-02 | 5.78E-04 | 2.40E-02 | 5.42E+00

considerably, yet, not as significantly as the adaptive sampling
method. The percentage of error for Cp decreased down to
5.61%, while the error for Cy, remained fairly the same. This
goes to show that the Adaptive Sampling method predicted
the optimum value more accurately, compared to the One-Shot
Sampling method.

Despite the added accuracy at the optimum point and a
reduced number of required samples, the ANN model trained
with adaptive sampling method performs similarly to the ANN
model trained with one-shot sampling all over the design
space. If we consider the errors of iteration-3 and case-1 from
Table II, we can observe that the MAE, MSE, RMSE and
MAPE of both models are fairly similar.

IV. CONCLUSIONS

This study explores machine learning techniques to tackle
design optimization problems, which, in practical cases, can be
used to significantly reduce the computational cost and time of
engineering design. In this paper, an optimization framework
has been developed to enhance foil efficiency by maximizing
lift while constraining drag and sectional area to remain
constant. Moreover, two sampling strategies were investi-
gated: One-Shot Sampling and Optimization-Based Adaptive
Sampling. Both sampling strategies resulted in a significant
increase in lift and aerodynamic efficiency. However, for the
same number of samples, the Optimization-Based Adaptive
Sampling was able to find the global maximum, whereas
the One-Shot Sampling model remained adhered to a local
maximum. The ANN model with Adaptive Sampling led to
an optimized foil shape that exhibits 58.68% more lift relative
to the base case. This selective sampling method considerably
increased the accuracy of the surrogate model at the optimum
point. In contrast, the One-Shot Sampling did not achieve the
same level of accuracy at the optimum point. However, both
models showed similar performance across the entire design
space.
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